If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-10X-416=0
a = 1; b = -10; c = -416;
Δ = b2-4ac
Δ = -102-4·1·(-416)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-42}{2*1}=\frac{-32}{2} =-16 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+42}{2*1}=\frac{52}{2} =26 $
| e-7=3 | | -5-2k=2+-7 | | 35=0.35(w) | | 4/5x-11=57 | | 6x=8=360 | | -3=1+b-2b | | 2{x+2}=20 | | 13x-18=7x+8 | | 3.1g+4=1.1g+12 | | 2{x+2=20 | | x+.2x=39 | | 11x+13x-18=6x+7x+8 | | 3.5x+.5=1.5+2.5x | | X/6+x=5/12 | | 6(x+8)=8-4x | | -w=10 | | 10+x/4=11+2x | | 1-3a=-a+13 | | 11=3x-4+2x | | c/6+55=64 | | x/5+3=7 | | 2/3(x)-5/6=-5/12(x)+1/4 | | 72=4m-16 | | -4p+p=18 | | (7a+2,10a+3)=1 | | 5x/2+x/2-4/2=11 | | 8x²+5=35 | | 4x+9+95=180 | | 19x+28=14x=63 | | 2(-3z+1=-40 | | p^2+2p(1-p)+(1-p)^2=54 | | 7/2x+1/2x=11/2+5/2x |